91 research outputs found

    Manipulating Fock states of a harmonic oscillator while preserving its linearity

    Full text link
    We present a new scheme for controlling the quantum state of a harmonic oscillator by coupling it to an anharmonic multilevel system (MLS) with first to second excited state transition frequency on-resonance with the oscillator. In this scheme that we call "ef-resonant", the spurious oscillator Kerr non-linearity inherited from the MLS is very small, while its Fock states can still be selectively addressed via an MLS transition at a frequency that depends on the number of photons. We implement this concept in a circuit-QED setup with a microwave 3D cavity (the oscillator, with frequency 6.4 GHz and quality factor QO=2E-6) embedding a frequency tunable transmon qubit (the MLS). We characterize the system spectroscopically and demonstrate selective addressing of Fock states and a Kerr non-linearity below 350 Hz. At times much longer than the transmon coherence times, a non-linear cavity response with driving power is also observed and explained.Comment: 8 pages, 5 figure

    Effective two-level approximation of a multi-level system driven by coherent and incoherent fields

    Full text link
    The numerical simulation of multiple scattering in dense ensembles is the mostly adopted solution to predict their complex optical response. While the scalar and vectorial light mediated interactions are accurately taken into account, the computational complexity still limits current simulations to the low saturation regime and ignores the internal structure of atoms. Here, we propose to go beyond these restrictions, at constant computational cost, by describing a multi-level system (MLS) by an effective two-level system (TLS) that best reproduces the coherent and total scattering properties in any saturation regime. The correspondence of our model is evaluated for different experimentally realistic conditions such as the modification of the driving field polarization, the presence of stray magnetic fields or an incoherent resonant electromagnetic field background. The trust interval of the model is quantified for the D2-line of 87Rb atoms but it could be generalized to any closed transition of a multi-level quantum system.Comment: 11 pages, 6 figure

    Robust laser frequency stabilization by serrodyne modulation

    Full text link
    We report the relative frequency stabilization of a distributed feedback erbium-doped fiber laser on an optical cavity by serrodyne frequency shifting. A correction bandwidth of 2.3 MHz and a dynamic range of 220 MHz are achieved, which leads to a strong robustness against large disturbances up to high frequencies. We demonstrate that serrodyne frequency shifting reaches a higher correction bandwidth and lower relative frequency noise level compared to a standard acousto-optical modulator based scheme. Our results allow to consider promising applications in the absolute frequency stabilization of lasers on optical cavities.Comment: 3 pages, accepted for publication in Optics Letter

    Technology roadmap for cold-atoms based quantum inertial sensor in space

    Get PDF
    Recent developments in quantum technology have resulted in a new generation of sensors for measuring inertial quantities, such as acceleration and rotation. These sensors can exhibit unprecedented sensitivity and accuracy when operated in space, where the free-fall interrogation time can be extended at will and where the environment noise is minimal. European laboratories have played a leading role in this field by developing concepts and tools to operate these quantum sensors in relevant environment, such as parabolic flights, free-fall towers, or sounding rockets. With the recent achievement of Bose-Einstein condensation on the International Space Station, the challenge is now to reach a technology readiness level sufficiently high at both component and system levels to provide "off the shelf"payload for future generations of space missions in geodesy or fundamental physics. In this roadmap, we provide an extensive review on the status of all common parts, needs, and subsystems for the application of atom-based interferometers in space, in order to push for the development of generic technology components

    Technology roadmap for cold-atoms based quantum inertial sensor in space

    Get PDF
    Recent developments in quantum technology have resulted in a new generation of sensors for measuring inertial quantities, such as acceleration and rotation. These sensors can exhibit unprecedented sensitivity and accuracy when operated in space, where the free-fall interrogation time can be extended at will and where the environment noise is minimal. European laboratories have played a leading role in this field by developing concepts and tools to operate these quantum sensors in relevant environment, such as parabolic flights, free-fall towers, or sounding rockets. With the recent achievement of Bose–Einstein condensation on the International Space Station, the challenge is now to reach a technology readiness level sufficiently high at both component and system levels to provide “off the shelf” payload for future generations of space missions in geodesy or fundamental physics. In this roadmap, we provide an extensive review on the status of all common parts, needs, and subsystems for the application of atom-based interferometers in space, in order to push for the development of generic technology components

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Piégeage et mesure non-destructive d'atomes froids dans une cavité en anneau de haute finesse

    No full text
    This thesis investigates the generation of atomic spin-squeezed states by quantum non-demolition (QND) measurements in a high-finesse optical cavity. Cold atom interferometry has demonstrated state of the art performance for the measurement of tiny rotations, accelerations and time. The sensitivity of atom interferometers has already reached the atomic shot noise level, a limit that could be overcome by the use of non-classical atomic states. In this context, we developed a crossed high-finesse cavity resonating both at 1560 nm and 780 nm. Laser light at 1560 nm injected in the cavity generates a far off resonance optical dipole trap where Rb 87 cold atoms are loaded from a magneto-optical trap. The lifetime of the atoms in this dipole trap is limited by the residual background collisions, indicating that further evaporation process should be effective. The concepts of QND measurement are introduced and a wavefunction formalism that describes the spin-squeezing dynamics of the atomic state is discussed. This formalism is applied to practical measurement apparatus that are the Mach-Zehnder interferometer and the heterodyne detection. Experimentally, this non-destructive measurement was implemented at 780 nm in a frequency modulation scheme strongly immune to noise. The influence of this non-demolition probe on the atomic sample has been characterized in single pass and this tool has been applied to follow in real time the state of atomic interferometers. In addition to this work, a narrow linewidth Raman laser suitable for high precision spectroscopy was implemented with cold atoms as the gain medium.Cette thèse s'intéresse à la génération d'états atomiques compressés par la mesure. La mesure considérée est de type quantique non-destructive, et profite de la surtension d'un résonateur optique de grande finesse. L'interférométrie atomique a démontré des performances inégalées pour la mesure de rotations, d'accélérations et du temps. Mais la sensibilité de ces appareils est aujourd'hui limitée par le bruit de grenaille, qui ne pourra être dépassé que par l'utilisation d'états non-classiques. Dans ce contexte, nous avons développé un appareil contenant une cavité optique de haute-finesse résonante à 1560 nm et à 780 nm. La lumière laser à 1560 nm qui est injectée dans la cavité génère un piège dipolaire où des atomes de Rb 87 sont chargés à partir d'un piège magnéto-optique. Le temps de vie de ces atomes dans le piège dipolaire est limité par les collisions avec le gaz résiduel, ce qui donne bon espoir pour l'implémentation d'une évaporation. Les concepts de mesure QND sont ensuite mis en place et un formalisme de fonction d'onde décrivant la dynamique de compression d'états est discuté et appliqué à des situations concrètes. Expérimentalement, cette mesure non-destructive réalisée à 780 nm a été implémentée grâce à une technique de modulation de fréquence particulièrement insensible aux bruits classiques. L'influence de cette sonde sur le système a été quantifiée en simple passage et cet outil a permis de suivre en temps réel l'état d'un interféromètre atomique. En outre, nous avons réalisé un laser Raman de faible largeur de raie. Ce laser qui utilise les atomes froids comme milieu à gain serait particulièrement adapté pour réaliser des mesures spectroscopiques de précision
    corecore